

Vladimir N. Litvinenko for eRHIC team

Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA

Credits

....L.Ahrens, D.Anderson, M.Bai, D.P.Barber, J.Beebe-Wang, I.Ben-Zvi, M.Blaskiewicz, J.M.Brennan, R.Calaga, X.Chang, E.D.Courant, A.Deshpande, M.Farkhondeh, A.Fedotov, W.Fischer, W.Franklin, W.Graves, H.Hahn, D.Kayran, J.Kewisch, V.N.Litvinenko, W.W.MacKay, R.Milner, C.Montag, A.V.Otboev, S.Ozaki, B.Parker, S.Peggs, E. Pozdeyev, V.Ptitsyn, T.Roser, A.Ruggiero, Yu.M.Shatunov, B.Surrow, S.Tepikian, C.Tschalaer, D.Trbojevic, J. van der Laan, D.Wang, F.Wang, V.Yakimenko, S.Y.Zhang, A.Zolfaghari, T.Zwart.....

BNL , Upton, NY, USA
MIT-Bates, Middleton, MA, USA
TJNAF, Newport News, VA, USA
SUNY, Stony Brook, NY, USA
BINP, Novosibirsk, Russia
DESY, Hamburg, Germany

Work done in collaboration with many leading institutions:

- National Laboratories
 - Fermilab, JLab, MIT/Bates
- Universities
 - Stony Brook, Indiana
- International Labs
 - BINP, GSI, DESY

Main developments

- Electron and stochastic cooling for ions and protons
 - R&D ERL and SRF
- Increase of polarized proton beam intensity to 111 bunches \times 1.4 10^{11} protons
- Better understanding of beam stability in linac-ring eRHIC
 - disruption is not a problem
 - BNL's SRF linac give TBBU threshold ~ 3 A (0.45 needed)
- Improvement in QE for GaAs cathodes in polarized guns
- Small-gap magnets for ERL loops for eRHIC
 - leads to comparable prices for ring-ring and linac-ring

Physics Requirements

- To provide electron-proton and electron-ion collisions
- Energy ranges:

2-10 GeV polarized e⁻ or 10 GeV polarized e⁺ 26-250 GeV polarized protons or 100 GeV/u Au

- · Luminosities:
 - $> 10^{33}$ cm⁻²s⁻¹ region for e-p
 - > 10³¹ cm⁻²s⁻¹ region for e-Au
- >70% polarization degree for both lepton and proton beams
- · Longitudinal polarization in the collision point

eRHIC

Zeroth-Order Design Report

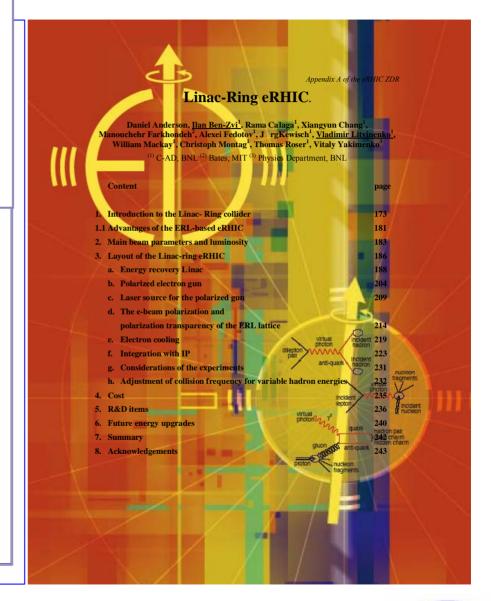
BNL: L. Ahrens, D. Anderson, M. Bai, J. Beebe-Wang, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, R. Calaga, X. Chang, E.D. Courant, A. Deshpande,

A. Fedotov, W. Fischer, H. Hahn, J. Kewisch, V. Litvinenko, W.W. MacKay, C. Montag, S. Ozaki, B. Parker, S. Peggs, T. Roser, A. Ruggiero, B. Surrow,

S. Tepikian, D. Trbojevic, V. Yakimenko, S.Y. Zhang

MIT-Bates: W. Franklin, W. Graves, R. Milner, C. Tschalaer, J. van der Laan,

D. Wang, F. Wang, A. Zolfaghari and T. Zwart

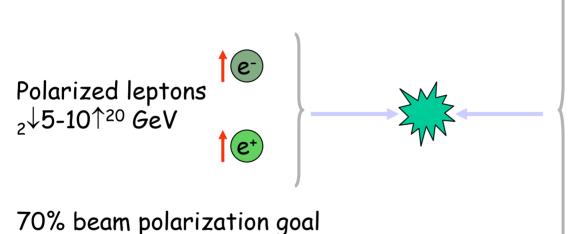

BINP: A.V. Otboev, Yu.M. Shatunov

DESY: D.P. Barber

Editors: M. Farkhondeh (MIT-Bates) and V. Ptitsyn (BNL)

http://www.agsrhichome.bnl.gov/eRHIC/

Goals for eRHIC



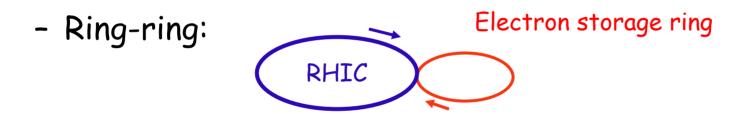
eRHIC Scope -QCD Factory

Electron accelerator

RHIC

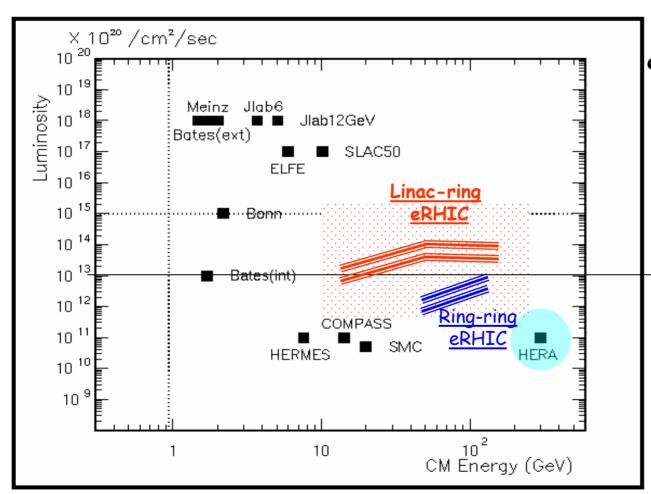
Polarized protons ₂₅↓ 50-250 *G*eV

Polarized light ions (He³) 167 GeV/u


Center mass energy range: 15>-100 ∨ GeV

How eRHIC can be realized?

Two main design options:

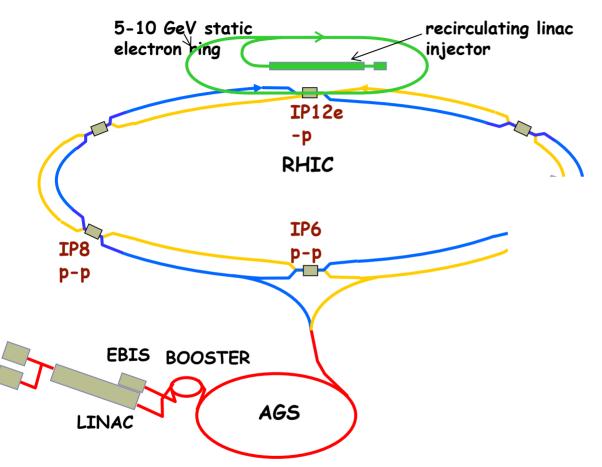

- Linac-ring:

CM vs. Luminosity

eRHIC

- Variable beam energy
- Polarizes electrons and protons
- p-He³-U ion beams
- Light ion polarization
- Large luminosity

Advantages & Disadvantages Ring-Ring Linac-Ring


- Proven technology (B-factory)
- Supports both electron and positron (!) beams options
- Requires significant (3-fold) increase to reach L=0.8×10³³ cm⁻² sec⁻¹ but with very short (±1 m) detector
- Reasonable detector length (±3 m) reduces luminosity for present proton/ion intensities in RHIC below or about 10³² cm⁻² sec⁻¹
- Polarization is not available in forbidden energy zones
- Single IP (period).
- Machine element inside detector
- Luminosity plummets at lower E_{cm}

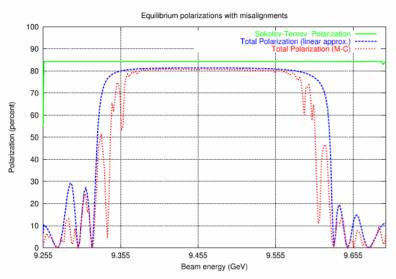
- High luminosity up to 10³⁴ cm⁻² sec⁻¹
- Satisfy eRHIC physics goal with <u>present</u> <u>proton/ion intensities</u> in RHIC (L>10³³ cm⁻² sec⁻¹)
- Allows multiple IPs
- No machine elements inside detector(s)
- No significant limitation on the lengths of detectors
- Allows wider range of CM-energies with high luminosities
- Full spin transparency at all energies
- Energy of ERL is simply upgradeable
- Novel technology
- Need R&D on polarized gun
- Needs a dedicated ring positrons (if required)

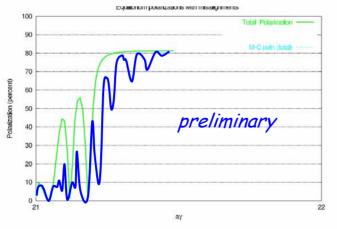
Ring-ring design option

The e-ring design development led by MIT-Bates. Technology similar to used at B-factories.

- The electron ring of 1/3 of the RHIC ion ring circumference
- Full energy injection using polarized electron source and 10 GeV energy linac.
- e-ion collisions in one interaction point.
 (Parallel mode : Ion-ion collisions in IP6 and IP8 at the same time are possible.)
- Longitudinal polarization produced by local spin rotators in interaction regions.
- ZDR design luminosities (for high energy setup):
 - e-p: $4.4 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - e-Au: 4.4 10³⁰ cm⁻²s⁻¹
 - e-He³: 3.1 10³² cm⁻²s⁻¹

Ring-Ring developments and R&D:


- electron ring based on B-factory (MIT)
 - little R&D needed
- RHIC requires SIGNIFICANT (3X) increase in the beam intensity
 - issues of electron cloud
 - parasitic crossings

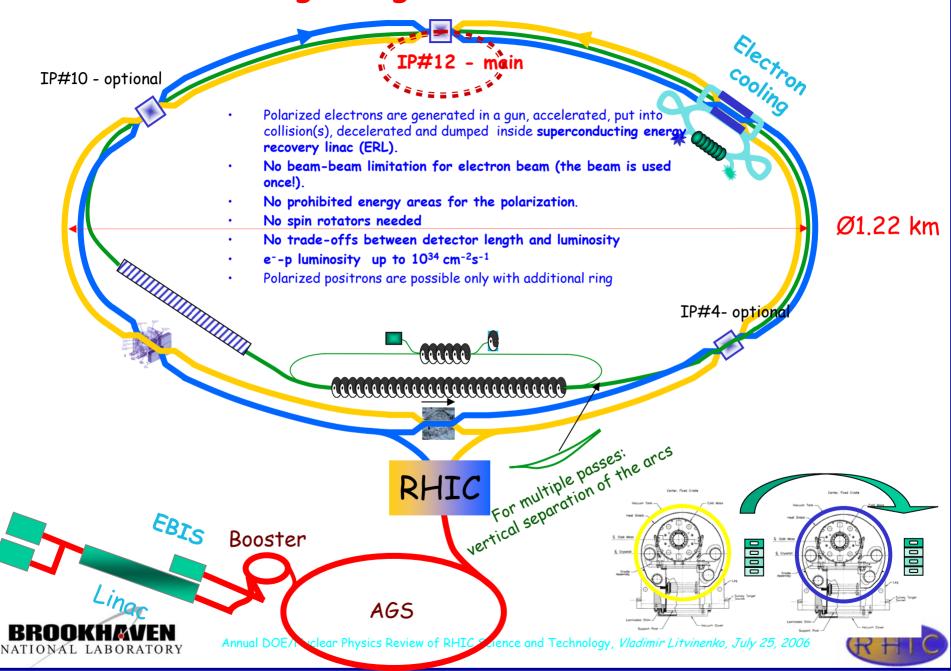


Ring-Ring: Electron polarization

Full 3-D spin motion

 First results for high order calculation of electron polarization indicate wide enough energy range without strong depolarization resonances.

Open issues:


- Compensation of depolarization from detector solenoid
- Possible depolarization from beam-beam effects (HERA observed polarization reduction down to 35-40%)

D.Barber, DESY

Linac-Ring Design based on 5-20+ GeV ERL

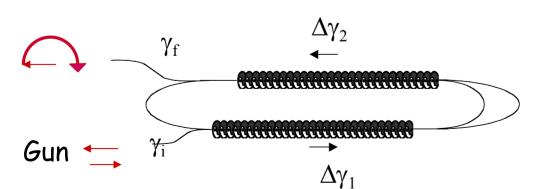
ERL spin transparency at all energies

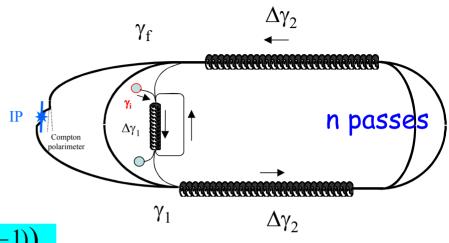
Bargman, Mitchel, Telegdi equation

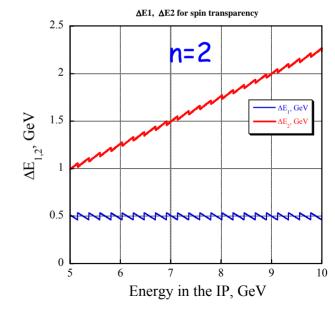
$$\frac{d\hat{s}}{dt} = \frac{e}{mc}\hat{s} \times \left[\left(\frac{g}{2} - 1 + \frac{1}{\gamma} \right) \vec{B} - \frac{\gamma}{\gamma + 1} \left(\frac{g}{2} - 1 \right) \hat{\beta} \left(\hat{\beta} \cdot \vec{B} \right) - \left(\frac{g}{2} - \frac{\gamma}{\gamma + 1} \right) \vec{\beta} \times \vec{E} \right]$$

$$a = g/2 - 1 = 1.1596521884 \cdot 10^{-3}$$

$$\hat{\mu} = \frac{g}{2} \frac{e}{m_o} \hat{s} = (1+a) \frac{e}{m_o} \hat{s};$$
 $v_{spin} = a \cdot \gamma = \frac{E_e}{0.44065[GeV]}$

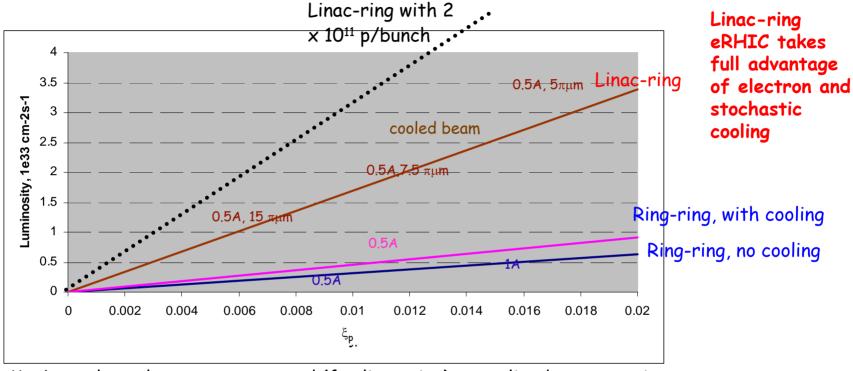



Total angle


$$\varphi = \pi a \cdot (\gamma_i (2n-1) + n(\Delta \gamma_1 \cdot n + \Delta \gamma_2 (n-1)))$$

for all energies!

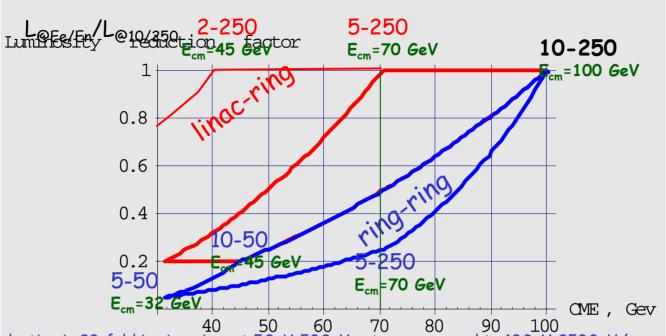
Has solution for all energies!
$$\begin{cases} \gamma_i + 2 \cdot \left(\Delta \gamma_1 + \Delta \gamma_2\right) = \gamma_f \\ a \cdot \left(\gamma_i (2n-1) + n(\Delta \gamma_1 \cdot n + \Delta \gamma_2 (n-1)) = N \right) \end{cases}$$



Luminosity with e-cooling

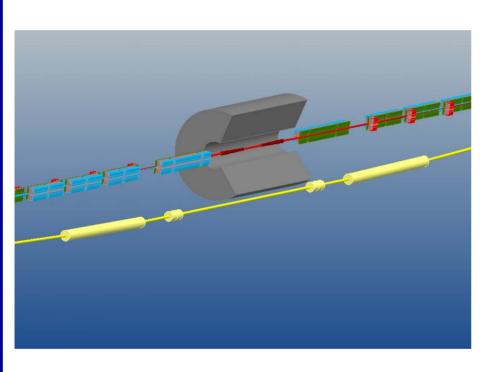
Calculations for 360 bunch mode and 250 Gev(p) \times 10 Gev(e) setup; 10^{11} p/bunch

Markers show electron current and (for linac-ring) normalized proton emittance. In dedicated mode (only e-p collision): maximum $\xi_p \sim 0.018$;


Transverse cooling can be used to improve luminosity or to ease requirements on electron source current in linac-ring option.

V. Ptitsyn

Luminosity dependence on CME with cooling


Luminosity reduction is 20-fold in ring-ring at 5 GeV - 50 GeV set-up compared to 10 GeV - 250 GeV (E_{cm} 100 GeV \rightarrow 32 GeV). Required norm.emittance $\sim 3\pi$ mm*mrad

- For ring-ring the cooling improves luminosities for low energy proton modes. The optimal curve is: $10-250 \rightarrow 10-50 \rightarrow 5-50$
- For linac-ring operation absence of tune shift limit on electron beam allows to maintain luminosity by keeping energy of hadron beam and reducing energy of electron beam
- Linac-ring takes full advantage of the cooling (which also reduces requirements on electron beam current).
- \rightarrow The optimal curve is for linac-ring: 10-250-> 5-250 -> 2-250->2-X

Interaction region design: affect luminosity in Ring-Ring

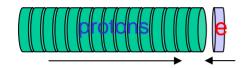
C.Montag, B.Parker, S.Tepikian, T.Zwart, D.Wang

- Design incorporates both warm and cold magnets.
- Provides fast beam separation. No parasitic collisions.
- Yellow ion ring makes 3m vertical excursion.
- Accommodates spin rotators (for ringring only) and electron polarimeter.
- Put a limit on horizontal b* for protons, because of aperture limitation in septum magnet, thus affecting achievable luminosity.
- Background produced by synchrotron radiation hitting septum magnet should not be problem (with HERA-like absorber used)

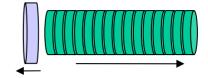
IR design schemes

	L*= Distance to nearest magnet from IP	Beam separation	Magnets used	Hor/Ver beam size ratio
Ring-ring, L*=1m	1m	Combined field quadrupoles	Warm and cold	0.5
Ring-ring, L*=3m	3m	Detector integrated dipole	Warm and cold	0.5
Linac-ring	5m	Detector integrated dipole	Warm	1

- $L^*=3m$ is preferable for ring-ring, compared to $L^*=1m$, due to larger detector acceptance. The cost of the factor 2 luminosity reduction.
 - Detector integrated dipole: dipole field superimposed on detector solenoid.


Present RHIC parameters: e-p luminosity for 112 bunches and $15\pi\mu$ m p-beam emittance 10Gev-250Gev mode

	ξ _p	Ne per bunch, 10 ¹¹	Total electron current, A	Luminosity, 1e33
Linac-ring	0.0049	1	0.150	0.41
	0.012	2.46	0.37	1.01
Ring-ring L*=3m design	0.0065	1	0.150	0.07
L*=3m design	0.013	2	0.300	0.14



Beam Disruption - LINAC-RING (Y. Hao)

NATIONAL LABORATORY

100000

180

160 140 120

100

80 60

9.781e-09

-3.35e-07

3.847e-05

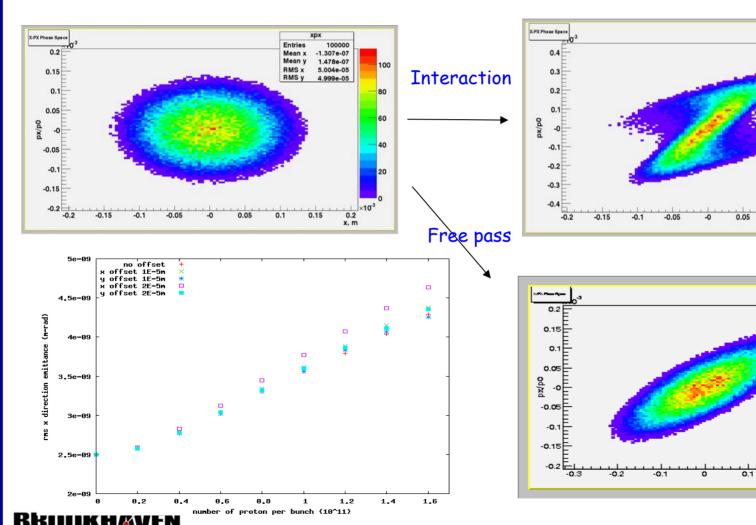
Mean x

RMS x

0.1

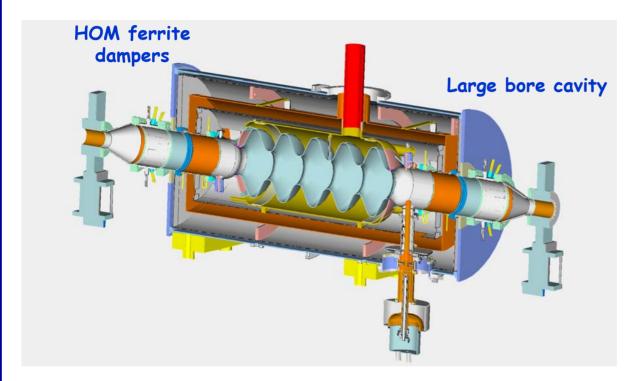
0.15

0.2 x, m


Мевпу 5.4e-09 RMS x 7.204e-05 RMS y 4.998e-05

0.3

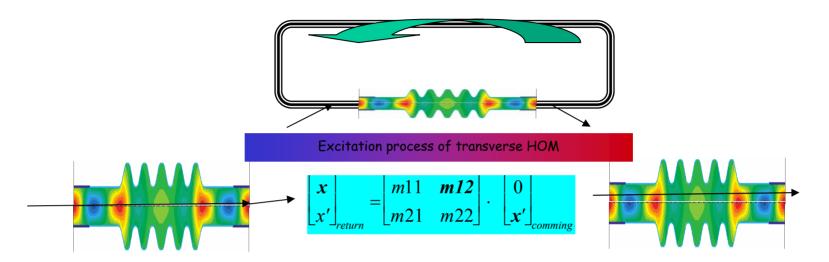
100


50 50

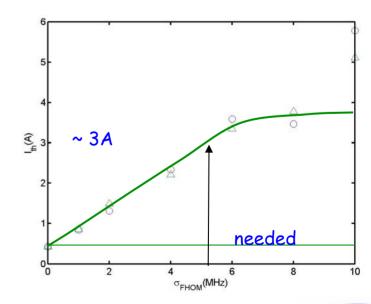
40

Superconducting RF Cavity

703.75 MHz 5-cell cavity designed in BNL for e-cooling and eRHIC

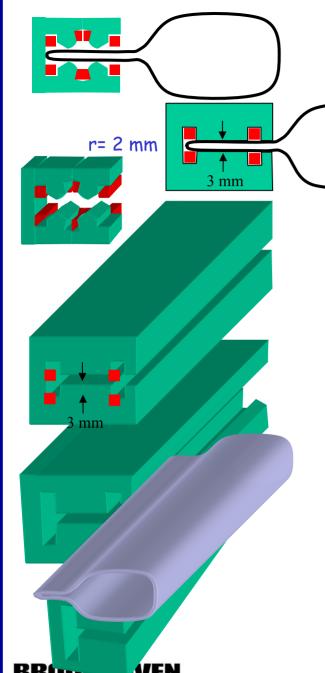

Cryostat assembly and cold testing in Sept.2006

State-of-the-art cavity engineering design to minimize and damp High Order modes of electromagnetic field.



TBBU stability (E. Pozdeyev)

- eRHIC Linac Parameters (preliminary):
 - 200x16MeV/pass cavities (3.2 GeV gain), measured Cu-model HOM spectrum
 - 50 focusing and 50 defocusing quadrupoles,
 G=±1.262 T/m
 - 3 loops around RHIC
 - 28 MHz bunch rep.rate



ERL for eRHIC: What should be aperture in magnets?

- At energy ~ 5 GeV (γ ~10,000) normalized emittance ~ 10 μ m rad gives emittance ~ 1 nm
- For β_{max} ~ 40 m maximum RMS size ~ 0.2 mm
- Beams from photo-guns do not have exponential tails, hence only
 1 ppm halo outside of 2-3 RMS sizes
- It means that aperture of ±1mm is sufficient
- It means that dipole gap ~ 3m is possible
- Bend radius is ~ 240 m -> dipole field 1.4 kGs
- Current per coil 165 A
- Inexpensive, low power consumption....

BINP quote & comments

- The RHIC circumference is 3.8 km, and we plan to $\sim 80\%$ of its circumference for the returning loops
- C-type dipoled with 1.5 kGs field and ~ 3mm gap (beam stay clear ±1 mm), length from 0.5m to 10 m a piece
- 600 C-shape quads with pole-tip radius 2 mm, length 0.5 m and gradient ~ 6 kGs/cm
- Dipoles (\$900/m!) -> \$2.52M per 2.8 km (loop)
- Girder (\$450/m) -> \$1.44M per loop
- Quads \$4500*600 -> \$2.7M
- Vacuum chamber \$5M to \$10M per loop depending on diagnostics
- Suggest to increase gap to ~ 6 mm
- Suggest small R&D project for small gap magnets

R&D items

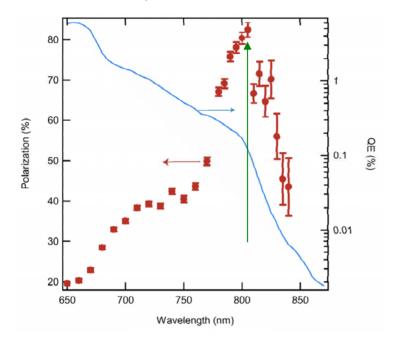
· Ring-ring:

- The accommodation of synchrotron radiation power load on vacuum chamber. (to go beyond 5.e32 cm⁻²s⁻¹ luminosity).
- Increasing total current in RHIC (ions per bunch and 3X number of bunches)

Linac-ring:

- High current polarized electron source
- Energy recovery technology for high energy and high current beams

Both eRHICs:


- Beam cooling techniques development (electron, stochastic) in RHIC
- Polarized He³ production (EBIS) and acceleration

Polarized electron gun: main R&D item for MIT

Photoemission from strained GaAs cathode

- The Ring-Ring option needs a modest laser power
- For the Linac-ring use an FEL for generating high laser power with optimal pulse structure and wavelength is a good choice - needs R&D
- Scale the area of the cathode to maintain the current density
- ILC and eRHIC (linac-ring) requirements are similar:
 - Charge 2.6-3.2 (16) nC
 - Spacing 2.8-337 (36) nsec
 - Train -0.95 (CW) msec
 - Polarization >80%

Summary

Two excellent design options for eRHIC are under development:

Ring-Ring and Linac-Ring

- Linac-Ring design is based on novel accelerator technologies but has broader reach ($E_{\rm cm}$) and <u>significantly higher luminosity</u> (~10x that of the ring-ring, i.e. L ~ 10^{34} cm⁻²s⁻¹) for electron-hadron collisions.
 - Needs significant R&D
 - Lacks natural ability to provide polarized positions in ERL mode I.e. will need a dedicated positron ring for such option
- Ring-Ring design is proven accelerator technology (but on the cutting edge)
 - The e-p luminosity of 10^{33} cm⁻²s⁻¹ is hard to achieve
 - · <u>Luminosity strongly reduces</u> even further
 - · if detector length exceed length of 2 m
 - for lower E_{cm} energies
 - potential of de-polarization caused by collisions (like in HERA e-ring)
 - Electron and position beam polarization has "dead energy zones"

Back-up slides

Center-of-mass energies for eRHIC

Energy, Gelproto	26	50	100	250
electrons c.m				
1	10.20	14.14	20.00	31.62
2	14.42	20.00	28.28	44.72
5	22.80	31.62	44.72	70.71
10	32.25	44.72	63.25	100.00
20	45.61	63.25	89.44	141.42
30	55.86	77.46	109.54	173.21

Energy, GeV Au/u	50	100
e c.m.		
1	14.14	20.00
2	20.00	28.28
5	31.62	44.72
10	44.72	63.25
20	63.25	89.44
30	77.46	109.54

ring-ring

linac-ring

In linac-ring eRHIC luminosity is determined by the hadron beam!

$$L = f_c \frac{N_e N_h}{4 \pi \beta_h^* \varepsilon_h}$$

Round beams
$$\beta_e^* \varepsilon_e = \beta_h^* \varepsilon_h$$

$$L = \gamma_h \cdot (f_c \cdot N_h) \cdot \frac{\xi_h \cdot Z_h}{\beta_h^* \cdot r_h}$$

In parallel with STAR and PHENIX

$$\xi_h = \frac{N_e}{\gamma_h} \frac{r_h}{4\pi Z \varepsilon_h} = 0.007$$

Electrons 0.28 0.52 0.96	28 0.52 0.96 2.8

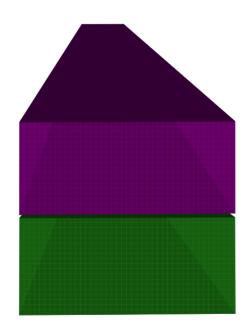
Luminosity (per nucleus) 10^{31} cm ⁻² sec ⁻¹	Au 50 GeV/u	Au 100 GeV/u
Electrons 5(2)-10(20) GeV	1.4	2.8

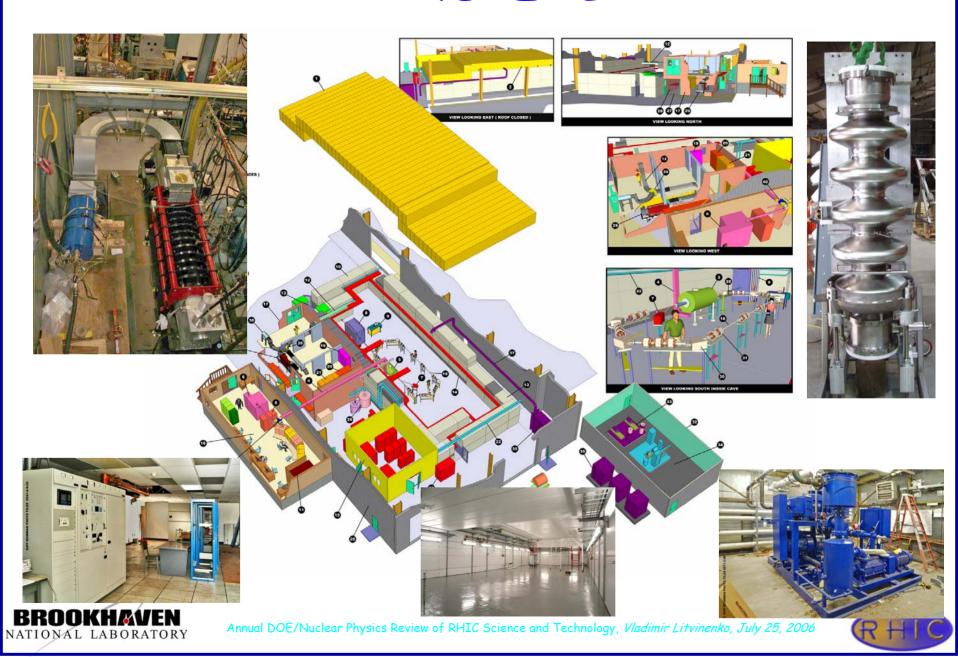
Dedicated eRHIC mode with 250 GeV p or 100 GeV/u Au

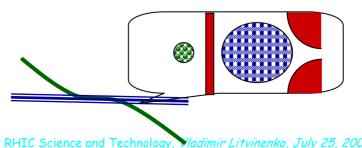
$$\xi_h \to 0.02 \quad \Leftrightarrow \quad L_{pe} \to 1.10^{34}$$

RHIC	main case	Present
Ring circumference [m]	3834	
Number of bunches	360	
Beam rep-rate [MHz]	28.15	
Protons: number of bunches	360	112
Beam energy [GeV]	26 - 250	
Protons per bunch (max)	$2.0 \ i \ 10^{11}$	
Normalized 96% emittance [µm]	14.5	
$\beta^*[m]$	0.26	
RMS Bunch length [m]	0.2	
Beam-beam tune shift in eRHIC	0.005	
Synchrotron tune, Qs	0.0028	
Gold ions: number of bunches	360	
Beam energy [GeV/u]	50 - 100	
Ions per bunch (max)	$2.0 \ i \ 10^9$	
Normalized 96% emittance [µm]	6	
$\beta^*[m]$	0.25	
RMS Bunch length [m]	0.2	
Beam-beam tune shift	0.005	
Synchrotron tune, Qs	0.0026	
Electrons:		
Beam rep-rate [MHz]	28.15	9.38
Beam energy [GeV]	2 - 10	
RMS normalized emittance [μm]	5- 50 for $N_e = 10^\circ$	$^{10}/10^{11}e^{-}$ per bunch
eta^*	~ 1 m, to fit beam-s	ize of hadron beam
RMS Bunch length [m]	0.01	
Electrons per bunch	$0.1 - 1.0 \ i \ 10^{11}$	
Charge per bunch [nC]	1.6 Š 16	
Average e-beam current [A]	0.045 Š 0.45	0.015 Š 0.15

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

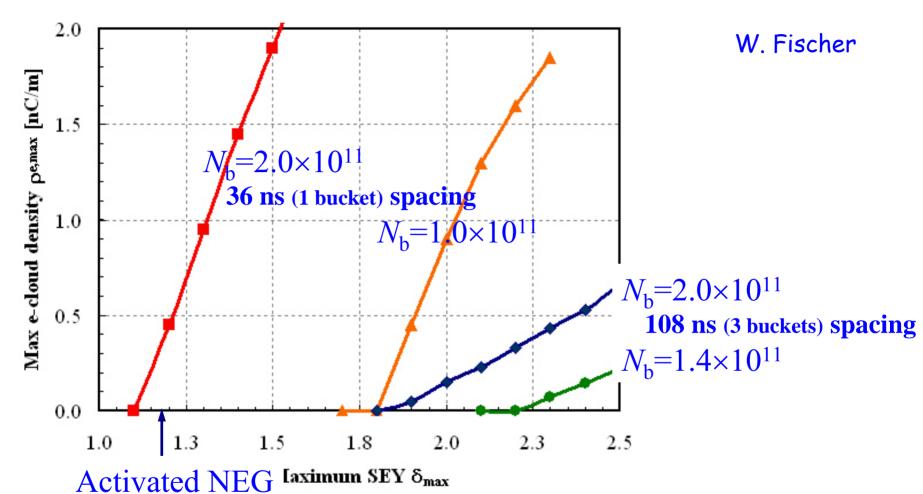





R&D ERL

Integration with IP

 $E_x = 12\sigma_{p,x} + 5\sigma_{e,x} + d$ septum= 12i 0.93mm + 5i 0.25mm + 10mm = 22.4mm.


- Round-beam collision geometry to maximize luminosity
- · Smaller e-beam emittance resulting in 10-fold smaller aperture requirements for the electron beam*
- · Possibility of moving the focusing quadrupoles for the ebeam outside the detector and the IP region, while leaving the dipoles used for separating the beam
- Possibility of further reducing the background of synchrotron radiation

E-cloud in current RHIC vs. eRHIC

Expect serious e-cloud problems for N_b =2.0×10¹¹ and 36 ns bunch spacing (Analysis needed for warm double beam, and cold regions also.)

